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Dear Editor, 

Arbuscular mycorrhizal fungi (AMF) belonging to phylum Glomeromycota, form symbiotic 

associations with roots of over 80% of land plant species in terrestrial ecosystems (van der 

Heijden et al., 2015). A growing body of evidence shows that symbiotic AMF are important for 

plant growth and health (van der Heijden et al., 2015). A plant root is commonly associated with a 

complex AM fungal community in terrestrial ecosystems (Pivato et al., 2007; Davison et al., 2015; 

Mao et al., 2015). The diversity and composition of AMF in the roots of several model plants 

(Pivato et al., 2007) and crops (Mao et al., 2015) has been widely studied. The host plant is a key 

factor affecting the root-associated AMF community (RAMFC), and studies found that the effects 

of host plants on RAFMC could be operating on the levels of different species (Pivato et al., 2007), 

cultivars (Mao et al., 2015) and plant genotype (An et al., 2010). Elymus sibiricus is one of the 

most commonly distributed cool-season perennial grasses found in temperate regions and is 

becoming increasingly important as a forage grass to providing good quality forage for livestock 

(Chen and Jia, 2002). Some studies had been focused on the symbiotic association between forage 

plants in Elymus and AMF (Liu et al., 2012; Chu et al., 2016), and the presence of AMF in roots 

appears likely to improve the resistance of E. nutans to cold stress (Chu et al., 2016) and increase 
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the biomass of this grass species (Yang et al., 2018). The present study was conducted to 

investigate, using sequencing technology, the potential host effects of E. sibiricus populations on 

the diversity of their RAMFC. 

Details of the accession numbers, and if the seeds originated from wild populations or from 

cultivars, are found in the Table S1 in Supporting Information. Four E. sibiricus accessions were 

from Inner Mongolia, China (M), and three of them were from wild populations and one of a 

cultivar; four accessions, all from cultivars, were from the Qinghai and Sichuan provinces, China 

(C); three accession, all from wild populations, were from Kazakhstan (K); and three accessions, 

all from wild populations, were from Russia (R). Seeds of these 14 accessions were sown in 14 

experimental plots (each plot: 1 m × 1 m, 9 individual plants) at the Yuzhong campus of Lanzhou 

University (103°34′ E, 35°34′ N, altitude 1720 m) in 2012. The climate information for this 

present study was presented in Table S2 in Supporting Information. The sampling processes, and 

the measurements of soil properties and mycorrhizal colonization were supplied in the Supporting 

Information. 

DNA of plant roots was extracted from 0.1 g root material using a plant DNA kit (Tiangen, 

Beijing) according to the manufacturer’s instructions. AMF sequences were amplified using the 

small subunit (SSU) rRNA gene primer, and the AMV4.5NF-AMDGR primer pair (van Geel et al., 

2014). The process of PCR and sequencing, and the analysis of sequencing data are detailed in the 

Supporting Information. The DNA sequences used in this study have been deposited in Sequence 

Read Achieve (SRA) of NCBI database under accession numbers SRX6973663 to SRX6973676. 

Community richness and diversity was determined with the Chao1 and Shannon indices 

respectively. Principal coordinates analysis (PCoA) of RAMFC based on the operational 

taxonomic units (OTUs) level was performed using Bray-Curtis distances through the R-package 

Vegan, and these statistically significant differences were obtained through the Multi Response 

Permutation Procedure (MRPP) based on the Bray-Curtis dissimilarities. Redundancy analysis 

(RDA) between relative abundance of RAMFC genera and rhizosphere soil properties were 

performed by CANOCO for Windows 4.5. 

The differences of colonization and alpha diversity in roots, and rhizosphere soil properties 

among the four different populations were tested using a one-way analysis of variance through 

Acc
ep

te
d

Downloaded to IP: 192.168.0.213 On: 2020-01-09 10:23:05 http://engine.scichina.com/doi/10.1007/s11427-019-1580-5



3 

 

SPSS 22.0 (SPSS, Chicago, IL, USA). Fishers Least Significant Differences (LSD) test was used 

to determine whether differences between means were statistically significant. In all tests, a 

P-value of < 0.05 was considered to be statistically significant.  

There were no significant (P>0.05) differences of soil properties among all soil samples 

(Table S3 in Supporting Information). However, there was a significantly (F=7.681, P=0.006) 

lower total root colonization rate for plants of the four populations from M compared to the three 

from R, three from K, and two from C populations which showed no significant differences 

(Figure 1A). A total of 523,183 sequences were detected from all root samples, and these 

sequences were assigned into 69 AMF OTUs with 5 main genera through the Neighbor-Joining 

(NJ) phylogenetic tree (Figure S1). The most dominant genera in RAMFC of R, K, C and M E. 

sibiricus populations were Claroideoglomus, Rhizophagus, Glomus and Rhizophagus, respectively 

(Figure 1B). 

The richness and diversity of AMF in rhizosphere soil were significantly (P=0.000) higher 

than those in the RAMFC of E. sibiricus, studied by the Shannon and Chao1 tests (Figure 1CD). 

The diversity of the RAMFC of the R populations was significantly (P<0.05) higher than those of 

the C and M populations, while the diversity of RAMFC of the K and C populations was 

significantly (P<0.05) higher than those of the M populations (Figure 1D). The results of PCoA 

showed that the composition of RAMFC was significantly (P=0.032) different among the four 

populations through MRPP analysis (Figure 1E). 

In this study, no significant relationships between the diversity and richness of RAMFC and 

soil properties were observed (Table S4 in Supporting Information). The first and second axis of 

RDA explained 48.5% and 27.3% of the variance, respectively (Figure 1F), and the Glomus and 

Claroideoglomus abundance was positively related to soil organic carbon (SOC), total N (TN), the 

ratio of available N to available P (AP), ammonium N (AN), total P (TP) and available N, while 

Rhizophagus and Paraglomus abundance was positively related to the content of potassium (AK), 

pH and the ratio of SOC to TN, and Funneliformis abundance was positively related to AP (Figure 

1F). The best structural equation modeling (SEM) model (χ
2
=9.986, Df=8, P=0.266, NFI=0.801, 

RMSEA=0.246) explained 62.0% and 72.1% variations of in diversity and richness of RAMFC, 

respectively, and the increase in the diversity of RAMFC was correlated with increasing soil AP 
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and decreasing soil SOC, while the decrease in the richness of RAMFC was correlated with 

increasing soil AP and nitrate N (NN), and decreasing soil SOC and TN (Figure S2 in Supporting 

Information). 

The present study showed that different E. sibiricus populations were dominated by different 

AM fungal taxa at the genus level. Our study also indicated that the host preferences and host 

selectivity were present among different populations. 
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Figure 1 Total root colonization in roots (A), relative abundance of five main AM fungal genera in 

roots (B), Chao (C) and Shannon (D) index of root-associated and rhizosphere soil AM 

fungal community, principal coordinates analysis (PCoA) of root-associated AM fungal 
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communities at AM fungal operational taxonomic units (OTUs) level (E), and Redundancy 

analysis (RDA) of relative abundance of root-associated AM fungal phyla (F) of E. sibiricus 

populations from the four different countries or regions and soil properties. R=Russian, n=3; 

K= Kazakhstan, n=3; C=Qinghai and Sichuan in China, n=4; M=Inner Mongolia, China, n=4 

The values were means ± standard error. a, b and c indicate significant difference at 0.05 

level. Soil factors indicated include AP (Available P), SOC (Soil Organic Carbon), AK 

(Available potassium), N/P (Available N: Available P). 
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